Optical Character Recognition Pipeline: Text Detection and Segmentation Part-II

In the last blog, we have seen what is text detection and different types of algorithms to perform it, In this blog, we will learn more about text detection algorithms.

Efficient and Accurate Scene Text Detector(EAST)

It is a deep learning text detection method which has two stages one is fully convolutional network(FCN) and second is non-max suppression(NMS) merging stage. In FCN it uses U-shape network which directly produces text regions either word level or text line level. Here is the diagram of FCN used in the algorithm.

U-shape FCN uses features from different layers of PVANet and then merge them to produce the outputs. The yellow boxes are different layers of PVANet and green boxes are merging layers of feature extracted from PVANet. The reason behind this merging branch is to produce outputs for both small word regions and large word regions. Low-level features will help in finding small word regions and high-level features will help in finding large word regions. This network will output geometries either in the form of RBOX(containing 5 values of which 4 are top and left coordinate, width, height and one is rotation angle) or QUAD( 4 coordinates of a rectangle) with one score map to tell about the confidence level prediction of text in it.

In second, NMS merging stage, it uses thresholding to exclude out overlapping geometries and produce the most accurate geometries for the text regions.

To implement it in our OCR pipeline, we can use it’s GitHub Repository. To make it workable use the following steps:

  1. Clone the repository into your directory: ” git clone https://github.com/argman/EAST.git”
  2. Download its pretrained model and put inside EAST directory.
  3. Before testing it you need to compile the lanms.
  4. To test this model, go to your EAST directory and then run following command from terminal:

You can also train this model with your dataset either from scratch or use pre-trained model provided earlier. To train this model you need to provide dataset path and dataset should consist of training images with corresponding text file which will have coordinates of text present in the image.

Connectionist Text Proposal Network(CTPN)

CTPN is a deep learning method that accurately predicts text lines in a natural image. It is an end to end trainable model consists of both CNN and RNN layers. In general, the length of a text line varies frequently. To solve this problem authors of this paper have considered text lines as a sequence of fine-scale text proposals, where each proposal are having a fixed width of 16 pixels with varying height. Let’s see the below image.

In the above figure, each vertical rectangular box is a fine text proposal. To go through model’s architecture see below figure:

The input image is being sent to VGG-16 model. Features output from conv_5 layer(the layer just before fully connected layers) of VGG-16 model is taken. A sliding window of size 3X3 is moved over VGG-16 output features and then fed sequentially to RNN network which consists of 256D bi-directional LSTM. This LSTM layer is connected to 512D fully connected layer which will next produce the outputs.

Now see the generation of output using this algorithm.

  • This algorithm uses anchor boxes to detect the text of different height. Let say we use k anchor boxes then output will consist of three main parts.
  • One is 2k vertical coordinates where each anchor box have its y coordinate (center position of box) and height of anchor box.
  • Second 2k text/non-text scores and,
  • third is k side refinement offset.
  • Here they have used 10 anchor boxes of varying height between 11 to 273 pixels. For this they have fixed the horizontal location and predicted only the vertical heights.
  • On the basis of text/non-text scores, sequential text proposal are merged and text-lines are formed. Side refinement offsets are used to refine the two end points of a text line.

To implement it in our OCR pipeline, we can use it’s GitHub Repository. To make it workable use the following steps:

  • Clone the repository into your directory: ” git clone https://github.com/eragonruan/text-detection-ctpn.git”
  • Go to “text-detection-ctpn-banjin-dev” directory
  • Run following command one by one:
  • Download pretrained checkpoint from google drive
  • Extract it and put checkpoints_mlt/ in text-detection-ctpn/
  • Now put your text file in data/demo and output will be in data/res
  • Now run the following command to check the outputs

You can also train this model using your own data, just follow the steps provide in GitHub Repository.

A Single Shot Oriented Scene Text Detector(TextBoxes++)

It is an end-to-end trainable fast scene text detector which can even detect oriented text present in the image. It does not require any post processing except non-maximum suppression. The basic idea is taken from the object detection algorithm SSD(single shot detector). SSD aims to predict general objects in an image but when it comes for text detection it fails. To improve this on text dataset TextBoxes++ have been introduced. Let’s see the model’s architecture:

First 13 layers are from VGG16 model. Then 2 fully connected layers of VGG-16 are converted into convolution layers which are followed by 8 convolution layers. Finally, 6 Text-Box layers are connected to 6 different intermediate convolution layers of the model. These 6 Text-Box layers are output layer and at test time non-max separation is applied to merge the result of these 6 to predict the best ones.

Text-Box layers are the key component of TextBoxes++. These are also convolutional layer which predicts both presences of text and bounding box coordinates. It includes both oriented bounding boxes and minimum horizontal boxes. Text-Box layers are designed to tackle the problem of variable length words.

You can find it’s GitHub Repository here. In GitHub they have also implemented CRNN(convolution recurrent neural network) to recognize text detected by the TextBoxes++. To implement it, you can follow their GitHub directions. Here are some results of TextBoxes++.

Source

That’s enough for text detection, in the next blog, we will learn about text recognition. Hope you enjoy reading.

Next Blog: Optical Character Recognition Pipeline: Text Recognition

If you have any doubt/suggestion please feel free to ask and I will do my best to help or improve myself. Good-bye until next time.

Leave a Reply